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Abstract. The Mott-Hubbard metal-insulator transition is investigated in a two-band Hubbard model
within dynamical mean-field theory. To this end, we use a suitable extension of Wilson’s numerical renor-
malization group for the solution of the effective two-band single-impurity Anderson model. This method
is non-perturbative and, in particular, allows to take into account the full exchange part of the Hund’s rule
coupling between the two orbitals. We discuss in detail the influence of the various Coulomb interactions on
thermodynamic and dynamic properties, for both the impurity and the lattice model. The exchange part
of the Hund’s rule coupling turns out to play an important role for the physics of the two-band Hubbard
model and for the nature of the Mott-transition.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

Many materials with open d- or f -shells show metal-
insulator transitions which are commonly classified to be
of Mott-Hubbard type due to strong electron-electron cor-
relations [1]. The conventional model to study this type
of transition is the one-band Hubbard model [2], which in
standard notation reads

H = −
∑

ijσ

tijc
†
iσcjσ +

U

2

∑

iσ

niσniσ̄. (1)

Major progress in understanding the physics of the
Mott-Hubbard metal-insulator transition (MHMIT) of
the model (1) has been achieved in the last decade
through the development of the dynamical mean-field the-
ory (DMFT) [3–5]. At T =0 the MHMIT occurs at a crit-
ical value of the Coulomb parameter Uc ≈ 1.5W [5–7],
where W denotes the bandwidth of the density of states
at U = 0. Interestingly, the transition is of first order [5,8]
for T > 0 with a second order end point at a Tc ≈ 0.017W
and Uc ≈ 1.2W .

Such a second order end point is also seen in the phase
diagram of typical Mott-Hubbard systems like V2O3 [9].
Therefore, the one-band Hubbard model has been fre-
quently used as a microscopic model for these materials
(see Refs. [5,10] and, in particular, Ref. [11] which focuses
on the critical regime close to the second order end point).
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On the other hand, the justification to base the micro-
scopic description on a one-band model (see Ref. [12]) has
been questioned recently [13].

For a proper description of materials such as transition
metal oxides, the orbital structure of the relevant elec-
tronic degrees of freedom has to be taken into account.
This can lead to a fairly complicated form of the underly-
ing tight-binding bandstructure (the kinetic energy term
acquires a matrix structure). Furthermore, additional lo-
cal Coulomb matrix elements arise which describe the in-
teractions between electrons in different orbitals.

The simplest possible extension of the model (1) to the
case of orbital degeneracy is the two-band Hubbard model.
It is a relevant model whenever the electronic degrees of
freedom close to the Fermi level are two-fold degenerate,
as for the eσ

g states in materials like LaMnO3 or KCuF3 [1].
Here we investigate the two-band Hubbard model in the
following form:

H = −
∑

ij

∑

mm′σ

tmm′
ij c†imσcjm′σ +

U

2

∑

i

∑

mσ

nimσnimσ̄

+
2U ′ − J

4

∑

i

∑

m �=m′

∑

σσ′
nimσnim′σ′

− J
∑

i

∑

m �=m′

�Sm · �Sm′

− J

2

∑

i

∑

m �=m′

∑

σ

c†imσc†imσ̄cim′σ̄cim′σ, (2)
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with the orbital index m = 1, 2. The Coulomb param-
eters U ′ ≥ 0 and J ≥ 0 describe the inter-orbital
Coulomb interaction and Hund’s exchange coupling, re-
spectively. The last term in (2) is necessary to ensure ro-
tational invariance of the interaction. By virtue of this
rotational invariance the Coulomb parameters are related
by U ′ = U −2J . Generally, the hierarchy of interactions is
U > U ′ > J .

A multi-band Hubbard model as in equation (2) dis-
plays a Mott transition at all integer fillings (not only
at half filling as in the single-band case). The additional
Coulomb interactions also modify the value of Uc and, pos-
sibly, the character of the transition, as has already been
investigated within the DMFT framework [14–18].

Various theoretical and numerical techniques have
been employed to investigate multi-band Hubbard models
within DMFT. The quantum Monte Carlo method [14,15],
which is very successful in treating the multi-band Hub-
bard models in present applications of the LDA+DMFT
approach [19], cannot, however, handle the rotation-
ally invariant form of the interaction in (2) due to the
sign problem (for recent progress in reducing this sign
problem, see Refs. [20,21]). On the other hand, ex-
act diagonalization [16], linearized DMFT [18] and ex-
act treatments in the limit of infinite orbital degener-
acy [17] are not able to reliably calculate dynamical
properties.

In this paper, we use Wilson’s numerical renormaliza-
tion group (NRG) [22] to solve the effective two-orbital
quantum impurity problem which appears in the DMFT
for the two-band Hubbard model. In Section 2 we start
with some technical issues related to the NRG in the two-
band case. Section 3 shows thermodynamic and dynamic
quantities for the two-orbital single-impurity Anderson
model, with the focus on the role of the Hund’s coupling.
In Section 4 we discuss the two-band Hubbard model; here
we concentrate on the simplest case, i.e. degenerate or-
bitals and intra-orbital hopping only: tmm′

ij = tijδmm′ .
The model equation (2) is studied on a Bethe lattice
(mainly to compare our results with those from other ap-
proaches); the generalization to other lattices (other densi-
ties of states) is straightforward. The paper is summarized
in Section 5.

2 NRG for multi-orbital models

The use of the NRG to solve the effective quantum im-
purity model appearing in the DMFT self-consistency has
been extensively discussed in the literature [7,8,23]. Here
we focus on the additional problems arising in the two-
orbital impurity Anderson model, which constitutes the
effective local model arising in the DMFT for the two-
orbital Hubbard model.

The two-orbital Anderson impurity Hamiltonian (in

standard notation) is given by

H =
∑

�kmσ

ε�kmσc†�kmσ
c�kmσ

+
∑

mσ

εdd
†
mσdmσ

+
U

2

∑

mσ

nd
mσnd

mσ̄

+
2U ′ − J

4

∑

m �=m′

∑

σσ′
nd

mσnd
m′σ′

− J
∑

m �=m′

�Sm · �Sm′

− J

2

∑

m �=m′

∑

σ

d†mσd†mσ̄dm′σ̄dm′σ

V√
N

∑

�kmσ

c†�kmσ
dmσ + h.c. (3)

Within the NRG approach, the quantum impurity
problem is mapped onto a semi-infinite chain form [22]
with the impurity at the first site of the chain and the con-
duction band written in a one-dimensional tight-binding
form. The model in the semi-infinite chain form is then
solved by iterative diagonalization. Therefore, the major
obstacle in applying the NRG to multi-band models is the
dramatic increase of the Hilbert space with each NRG step
(in each step, one additional site of the semi-infinite chain
is included).

A possible solution to this problem is to use very large
values of the discretization parameter Λ so that the num-
ber of states can be reduced significantly. Averaging over
many discretizations (the so-called “Z-trick”) has been
shown to give reliable results for thermodynamic quan-
tities (see Ref. [24]), even for large values of Λ. However,
this approach becomes at least cumbersome for the cal-
culation of dynamic quantities which are required for the
DMFT self-consistency.

Here we adopt two different strategies which allow to
use a small value of the NRG discretization parameter Λ
and to keep enough states in each step so that dynamic
quantities can be calculated reliably. The first one is to
explicitly include the orbital quantum number in the it-
erative construction of the basis states. This additional
quantum number significantly reduces the typical matrix
size, so that O(7000) states can be kept in each NRG it-
eration with reasonable computation time and memory
consumption on modern SMP high-performance comput-
ers like e.g. the IBM Regatta. The price to pay is that one
has to omit the last term in the Coulomb interaction, i.e.

J

2

∑

m �=m′

∑

σ

d†mσd†mσ̄dm′σ̄dm′σ,

because it explicitly breaks the orbital symmetry. How-
ever, it turns out that this term does not influence the
thermodynamics, and dynamic quantities are only slightly
affected via the multiplet structure of the Hubbard bands.
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Fig. 1. Comparison of the single-particle dynamics for a NRG
calculation (orbitally degenerate and particle-hole symmetric
single-impurity Anderson model) in the Kondo regime using
the conventional truncation scheme (full line) and the asym-
metric truncation scheme (dashed line). Note that particle-hole
symmetry and orbital degeneracy are preserved even in the lat-
ter scheme.

The second strategy is an asymmetric truncation
scheme: instead of adding both orbital degrees of free-
dom simultaneously, the Hilbert space is truncated af-
ter adding each orbital individually. This also leads to a
significant reduction of the Hilbert space in the iterative
diagonalization.

However, the asymmetric truncation scheme does not
guarantee that orbital symmetry is preserved during the
NRG iterations. In fact, a slight violation of orbital sym-
metry is observed for very small energies, typically much
lower than the Kondo temperature. It turns out that for
the DMFT-calculations presented in Section 4, both meth-
ods give almost identical results, at least on the scale
shown in the figures.

Figure 1 shows a comparison of the local single-particle
density of states (DOS) for the impurity Anderson model
equation (3) with twofold degeneracy, particle-hole sym-
metry, and calculated with both schemes (symmetric trun-
cation with orbital quantum number and asymmetric
truncation) in the Kondo limit. Here, the NRG discretiza-
tion parameter is Λ = 2.5 and 3600 states were kept in
each NRG step. The model parameters are U = 7∆0,
J = U/100 and U ′ = U − 2J . As usual, ∆0 = πNF V 2

denotes the bare hybridization width (NF is the conduc-
tion electron DOS at the Fermi energy). Obviously, the
asymmetric truncation (dashed line) leads to accurate re-
sults for both the value of the low-energy scale and the
form of the Kondo resonance. In addition, it does not vio-
late particle-hole symmetry and orbital symmetry, at least
on the scale shown in Figure 1.

The asymmetric truncation scheme introduced here
might be of advantage in cases where the orbital symme-
try is violated from the outset so that the orbital quantum
number cannot be used in the calculation to reduce the
matrix size.

3 Hund’s rule coupling in the single-impurity
model

Before we turn to the application of the NRG to the two-
orbital Hubbard model let us first discuss the effects of
Hund’s coupling for the single impurity model (3). For
simplicity we consider a conduction band with constant
DOS, ρ(ε) = NF , in the interval [−D, D] and choose
D = 1 as unit of energy. The local energy εd is chosen such
that the model is particle-hole symmetric, i.e. 〈nd〉 = 2. As
we will see, there is a profound difference between the cases
with rotationally invariant and Ising-like exchange. The
two-orbital impurity Anderson model has already been in-
vestigated with NRG by several groups [25–27]. Here we
want to concentrate on the influence of Hund’s coupling on
low energy scales and the possibility of a quantum phase
transition. To this end we present results for thermody-
namic and dynamic properties. To improve the accuracy
of thermodynamic properties we employed Oliveira’s “Z-
trick” [24], which allows to use a larger discretization Λ
(we used Λ = 5) and reduce the number of states kept
(1000 after truncation here).

Let us begin with thermodynamic properties of the
particle-hole symmetric two-orbital single impurity model
in the Kondo limit, that is for a hybridization width
∆0 = πNF V 2 much smaller than the other bare energy
scales [28]. The temperature evolution of the effective
squared moment1 µ2

eff := T · χimp(T ) and entropy S(T )
for J = 0, U/100 and U/10 is shown in Figure 2. The
calculations were done with the rotationally invariant ex-
change coupling and U ′ = U − 2J , but neglecting the
term breaking orbital symmetry. For comparison we also
include results for a single-orbital SIAM – marked m = 1
in Figure 2 – with the same values of U and ∆0.

For J = 0, i.e. U = U ′, we observe an intermediate
“local-moment regime” with entropy S = ln 6 and effec-
tive moment µ2

eff = 1/3 corresponding to the six degener-
ate states, two of them magnetic, in the atomic limit. As
expected from general SU(N) arguments [29] this local
moment is eventually Kondo screened with an enhanced
Kondo scale ∼ (

T m=1
K

)1/m. As a technical sidemark let us
point out that for J = 0, unlike finite J , the asymmet-
ric truncation does not work properly, leading to wrong
results for S and µ2

eff in the local moment regime.
In the atomic limit, any finite J > 0 leads to a spin

triplet S = 1 as ground state with moment 〈S2
z 〉 = 2/3 and

entropy ln 3. Apparently, this situation is realized for inter-
mediate temperatures for both J = U/100 and J = U/10.
At low temperatures, this local triplet is again quenched
by the conduction electrons like for an ordinary S = 1/2
Kondo effect. Obviously, the two-orbital system has a con-
siderably reduced low-energy scale TK, which in addition
decreases strongly with increasing J . At present we do
not have a satisfactory explanation for this observation,

1 The adiabatic effective squared moment T · χimp(T ) intro-
duced by Wilson [22] should not be confused with the isother-
mal quantity 〈S2

z 〉. Kondo screening can be seen only in the
former; the latter goes to a finite constant value as T → 0.



220 The European Physical Journal B

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

T/∆0

00

1/3

ln(2)

ln(3)

ln(6)

1/4

2/3

T⋅χ(T)

S(T)

J=U/10

J=U/100
J=0

m=1

Fig. 2. Thermodynamic properties for a particle-hole sym-
metric two-orbital impurity model with varying Hund’s rule
coupling J = 0, U/100, and U/10; dashed lines: entropy, solid
lines: effective squared moments. The Coulomb parameter U
and the hybridization ∆0 were chosen such that the system
is in the Kondo limit. The inter-orbital Coulomb parameter is
fixed to U ′ = U − 2J by rotational invariance. For comparison
the results of a single-orbital SIAM are included.

-1 -0,5 0 0,5 1
ω

0

0,5

1

π∆
0A

(ω
)

J=0
J=U/100
J=U/10

-10
-7 0 10

-70

0,5

1

Fig. 3. Local DOS at T = 0 for a particle-hole symmetric two-
orbital impurity model with Hund’s rule coupling J = 0, U/100
and U/10. Other parameters are the same as in Figure 2.

but believe that it is related to the problem how spin-1/2
electrons screen a true S = 1 object.

A direct consequence of this substantial reduction of
the low-energy scale for the application to the Hubbard
model is that critical interactions for an MIT are also
strongly reduced for finite J (see Sect. 4 below).

The local DOS at T = 0 for J = U/100 and J = U/10
is shown in Figure 3. The calculations were done with a
discretization parameter Λ = 2.5 and 6400 states kept
after truncation. On the scale used in the main panel of
Figure 3 the Kondo resonance for J = U/10 appears to
be a vertical line, pointing to a strongly reduced Kondo
temperature, too. In addition, new structures on the scale
of J appear as shoulders in the DOS.

If one zooms into the region [−10−7, 10−7] around the
Fermi energy (see inset to Fig. 3), only the resonance for
J = U/10 remains visible with an energy scale well below
10−7. This again confirms the result from the thermody-
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Fig. 4. Comparison of thermodynamic properties for a
particle-hole symmetric two-orbital impurity model with Ising-
like Hund’s rule coupling J = U/100 and two values of the
hybridization parameter ∆0. Apparently, there exists a critical
∆0,c which separates a strong-coupling fixed point (∆0 > ∆0,c)
from a local-moment like behaviour (∆0 < ∆0,c).

namic quantities, viz. that with increasing J an exponen-
tial reduction of the Kondo temperature occurs. It is quite
obvious, that such a reduction in TK will later manifest
itself in a corresponding reduction of the critical U for
the Mott-Hubbard metal-insulator transition within the
DMFT.

Let us point out that Friedel’s sum rule implies as usual
the constraint π∆0A(0) = 1. This constraint is fulfilled
with high precision due to the calculation of the DOS via
the self-energy according to reference [23].

A completely different picture is obtained for an Ising-
like exchange interaction in model (3), which is realized
by replacing

J
∑

m �=m′

�Sm · �Sm′ → J
∑

m �=m′
Sz

mSz
m′

and neglecting the term

J

2

∑

m �=m′

∑

σ

d†mσd†mσ̄dm′σ̄dm′σ.

In this case, the atomic ground state is doubly degen-
erate and consists of the two states where two electrons
with the same spin occupy different orbitals. In contrast to
the full exchange we find that the properties change quite
dramatically with the ratio J/∆0, where ∆0 denotes the
hybridization width. In Figure 4 we compare calculations
for J = U/100 and two different values of ∆0. For large
∆0 we find the expected screening and corresponding for-
mation of a Fermi liquid at low temperatures. However,
for small ∆0, this behaviour is replaced by the formation
of a state reminiscent of a local moment with entropy ln 2
and effective local moment µ2

eff ≈ 1. Obviously, the ne-
glect of the spin-flip terms in Hund’s exchange leads to
a “critical” ratio J/∆0,c separating strong-coupling from
local-moment behavior. We interpret this feature in the
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Fig. 5. Comparison of the single-particle dynamics for Ising-
like Hund’s rule coupling for hybridization strengths above and
below the critical ∆0,c. Parameters are the same as in Figure 4.

following way. For the full exchange interaction, spin-flip
scattering as in the conventional S = 1/2 case is presum-
ably leading to a scenario similar to the standard Kondo
effect. For Ising-like Hund coupling J , on the other hand,
the atomic ground state consists, as already mentioned, of
the two states where two electrons with the same spin oc-
cupy different orbitals. Quite apparently, these two states
cannot be connected by low-energy processes like spin-
flips, i.e. the mechanism leading to the Kondo effect is not
present here. However, if the coupling to the band states
is large enough such that the S = 1/2 Kondo temperature
is larger than J , the system can screen the spins for each
orbital individually before the coupling J locks the sys-
tem into the states with Sz = ±1, leading to the observed
strong-coupling behavior at large ∆0.

Presently, it is not clear whether the change in the im-
purity properties is connected to some quantum critical
behavior like in the pseudo-gap model [30]. The clarifica-
tion of this question is of course of some interest in its
own right and will be discussed in detail in a forthcoming
publication.

The impurity DOS corresponding to the two different
regimes is shown in Figure 5. For ∆0 > ∆0,c (full line) the
typical structure is obtained. Decreasing ∆0 below ∆0,c

completely changes the structure of the DOS. Instead of a
Kondo peak, we now find a structure with a pseudo-gap at
the Fermi energy. It is quite evident, that this “criticality”
in the impurity model has profound effects on the MIT in
the DMFT calculations for the Hubbard model.

4 MIT in the two-orbital Hubbard model

Theoretical investigations of multi-orbital Hubbard mod-
els within DMFT have already led to a better under-
standing of various issues such as the nature of the Mott-
transition as a function of orbital degeneracy [14–18,31]
and the structure of the spectral function in realistic treat-
ments within the LDA+DMFT approach [19]. Detailed re-
sults have been obtained for the dependence of the critical
interaction strength Uc on the number of orbitals M and

different integer fillings n. Numerical DMFT-QMC calcu-
lations have been performed for M ≤ 3 [14,15,32]. Re-
markably, in the limit of large orbital degeneracy M → ∞
an analytical treatment of the DMFT becomes possible for
the MIT [17]. For T = 0, a scaling Uc = Uc,2 ∝ M for the
actual transition is found while Uc,1 ∝ √

M is obtained
for the critical interaction where the insulating solution
breaks down [17]. This is consistent with the linear depen-
dence for large M found in references [18,33,34] and with
the square-root dependence reported in reference [35]. The
inclusion of the Hund’s rule exchange coupling J has been
shown to significantly reduce the value of Uc [15,18,35]. In
particular, a qualitative change from continuous for J = 0
to discontinuous for any finite J has been observed in ref-
erence [18] (see also the Gutzwiller results in Ref. [36]).
A significant quantitative change of Uc when excluding
the spin-dependent part from the exchange coupling in
equation 2 has already been mentioned in reference [18],
but detailed results have not been published yet. Recently,
the issue of possible orbital-selective Mott transitions has
been investigated in references [37,38].

Let us now discuss the results from the NRG for the
particle-hole symmetric case. To allow a direct compari-
son with earlier results, we use as non-interacting DOS the
semielliptic form ρ0(ω) = 2

π

√
1 − ω2 (Bethe lattice) with

the same bandwidth for both orbitals. As NRG discretiza-
tion parameter we choose Λ = 2.5 and keep 6400 states
after truncation.

Except for J = 0, all the following results were ob-
tained with the asymmetric truncation scheme introduced
in Section 2 including all Coulomb interactions from the
model (2). We have observed that the symmetric trun-
cation scheme (taking into account the orbital quantum
number and neglecting the last term in the interaction)
leads to identical results for spectral functions, apart
from some weak redistribution of spectral weight in the
Hubbard bands due to a different atomic multiplet struc-
ture. However, the latter effect is only barely noticeable
due to the broadening introduced in calculating continu-
ous spectra from the NRG. More important, the critical
values Uc for all two-band calculations within DMFT are
not affected; possible problems due to the breaking of or-
bital symmetry by the asymmetric truncation scheme do
not play a role here, except again for J = 0.

We begin by comparing results for the one-band
Hubbard model (1) (Fig. 6a) and a two-orbital Hubbard
model with J = 0 and U = U ′ (Fig. 6b). As is well-
known from earlier DMFT calculations [14,15], the crit-
ical Coulomb parameter, Uc, for the model with J = 0
increases strongly with the orbital degeneracy M , Uc ∼
M [17,18]. This is also apparent from the results in Fig-
ure 6b. The system stays metallic up to the largest U
shown. The actual MIT occurs for a value 2.5W < Uc �
3W .

The results in Figures 6 and 7 are calculated with a
fairly large value of Λ = 2.5 and broadening parameter
b = 0.8 (see Eq. (8) in Ref. [8]) for both the single-band
case in Figure 6a and the two band case in Figures 6b
and 7. We therefore expect that our critical values Uc for
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orbital model with (a) full J = U/4 and (b) two-band model
with Ising-like J = U/4. In both cases U ′ = U − 2J was used.
The assignment between the different line styles and values of
U is the same as in Figure 6.

the Mott transition differ from more precise calculations,
and indeed we find them to be somewhat overestimated.
In the single-band case, for example, our result for Uc ≈
1.6W is slightly (10%) larger than the well established
value Uc = 1.47W [7]. A similar overestimation is also
present for M = 2, where Uc � 2.5W is reported in the
literature [14–18]. However, the qualitative features of the
transition are not altered by this overestimation.

The influence of Hund’s coupling on the development
of the spectra and the occurrence of the MIT can be seen
in Figure 7a, where results for different values of U and a
full Hund’s exchange J = U/4 are presented [39]. As has
been noted before [16,18], finite J substantially reduces
Uc. Such a behavior is also seen in Figure 7a. The critical
Coulomb parameter is reduced from Uc ≈ 3W for J = 0
to Uc ≈ 1.1W .

Presently, the standard technique to solve quantum
impurities with orbital degeneracy is quantum Monte-
Carlo (QMC). However, due to the minus sign problem,
one has to restrict the Coulomb interaction to density-
density type only, i.e. an Ising-like Hund’s exchange. The
last term in (2) has to be neglected completely. This raises
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Fig. 8. Inverse effective mass as function of U/W and J =
U/4 for the full (circles) and Ising-like exchange interaction
(squares). The latter shows a strong jump in 1/m∗ at Uc,
leading to a first order transition, while the former vanishes
continuously. The triangles represent a calculation with fixed
J = 0.1. The lines are meant as guide to the eyes.

the following questions: What are the consequences of
this approximation for the dynamics and in particular the
MIT?

To answer this question (at least partially) we per-
formed calculations with Ising-like exchange interaction as
defined in the previous section (see Ref. [40]) The results
are shown in Figure 7b. At a first glance, the results are
not very different, except that the critical U is further re-
duced to Uc ≈ 0.8W . On the other hand, the results for the
impurity calculation in Figures 4 and 5 already indicate
that the replacement of Hund’s exchange by an Ising-like
term has more severe consequences than a mere quantita-
tive change of energy scales. In the following we show that
this approximation indeed leads to a qualitative change in
the physical properties of the Mott-Hubbard MIT.

Let us now turn to the nature of the Mott transition.
For a one-band model, it is now commonly accepted that
the transition is of second order at T = 0 with a quasipar-
ticle weight that vanishes smoothly as one approaches Uc.
There is, however, a substantial region below Uc, where
the insulator is metastable [5,7]. Previous work using the
so-called linearized DMFT (L-DMFT) suggests that for
orbitally degenerate systems with finite J this may be dif-
ferent [18]. The authors of reference [18] found a first order
transition for small to intermediate J signaled by a jump
in the quasiparticle weight at Uc. The NRG results for
the inverse effective mass (≡ quasiparticle weight) for the
case J = U/4 are shown in Figure 8. The circles were ob-
tained from calculations using the full interaction, while
the squares represent calculations with Ising-like interac-
tions. Apparently, the latter signal a strong first order
transition at Uc ≈ 0.8W , while the former lead to a contin-
uously vanishing quasiparticle weight. For a fixed J = 0.1
(triangles in Fig. 8) the quasi-particle weight near Uc also
shows a jump at Uc as predicted by L-DMFT [18]. How-
ever, the magnitude of this jump comes out much smaller
in our calculations.
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Fig. 9. 〈S2
z 〉 for the two-band Hubbard model and different

values of J . The lines are meant as guide to the eye. Note that
for J = 0.1 and Ising-like J = U/4 a discontinuity in 〈S2

z〉
occurs at the critical U .

The differences between the different calculations (J =
0, J = 0.1 and J = U/4) become more apparent when one
looks at the local squared moment 〈S2

z 〉. For U → 0 this
quantity has the value 〈S2

z 〉 = 1/4 (for J = 0.1 it is ac-
tually slightly larger), while deep in the Mott insulator
it acquires the atomic value enforced by Hund’s coupling,
i.e. 〈S2

z 〉 = 1/3 for J = 0, 〈S2
z 〉 = 2/3 for finite full J and

〈S2
z 〉 = 1 for Ising-like J . This behavior is readily found

in the calculated values of 〈S2
z 〉 in Figure 9. In accordance

with the results presented in reference [18], the limiting
value for 〈S2

z 〉 is approached smoothly for J = 0. The
same holds for J = U/4, consistent with the results for
the quasi-particle weight in Figure 8. The slope, however,
strongly increases when one approaches Uc from below.
For constant J = 0.1, the numerical results are not deci-
sive, and could be interpreted as both a small discontinuity
at Uc and a continuous approach with diverging slope. On
the other hand, a quite strong discontinuity at Uc appears
for an Ising-like Hund’s coupling J = U/4, signalling a
rather strong first order transition in this case. The above
results are in rough agreement with the L-DMFT predic-
tions [18], although there one observes a first-order tran-
sition also for smaller values of J .

The appearance of an unambiguous and rather strong
first order transition for an Ising-like exchange coupling
shows that in this case the physics underlying the Mott-
Hubbard transition is very different from the one for the
rotationally invariant exchange interaction. As for the sin-
gle impurity model, we believe that a transition between
individually screened orbitals on the metallic side to a
local-moment regime enforced by the Ising coupling on
the insulating side occurs as soon as J becomes of the
order of the Fermi liquid scale. Depending on the details
of the non-interacting DOS (its value at the Fermi level
and the band width) and the values of U and J , this can
lead in the worst case to a serious underestimation of Uc

and possibly an incorrect description of the behavior of
physical quantities close to the transition.

5 Summary and conclusions

In this paper we presented first studies of the Mott-
Hubbard transition in a two-orbital Hubbard model
within the DMFT at T = 0 using Wilson’s NRG. In addi-
tion to a standard NRG implementation using the orbital
quantum number, we proposed an asymmetric truncation
scheme which turns out to work rather well in both the
two-orbital single impurity Anderson model and the two-
band Hubbard model.

As a first interesting result, we observed that for the
particle-hole symmetric case a finite Hund’s exchange
J > 0 leads to a tremendous reduction in the low-energy
scale TK. This is in striking contrast to the result for
J = 0, i.e. U = U ′, where the behavior conventionally ex-

pected for an SU(N) Kondo model, viz. TK ∼ N

√
T N=1

K ,
is found [29]. At present, the precise theoretical reason
for this rather unexpected strong influence of J on TK is
not clear. Interestingly, it is also rather different from the
case 〈nd〉 ≈ 1 where we find a mild increase of TK with
increasing J . Obviously, a detailed study of the physics
of multi-orbital quantum impurity models has to be an
important future aim.

A completely different behavior occurs if one replaces
the rotationally invariant Hund exchange by an Ising-like
one. In this case, the levels of the atomic doublet with
Sz = ±1 enforced by the Ising coupling cannot be con-
nected by Schrieffer-Wolff type spin-flip processes. Thus,
the Kondo effect can only occur for J ≤ T m=1

K , while for
larger J the systems is locked into a local moment enforced
by the exchange coupling. Note that this interpretation
also implies that in the strong-coupling phase the spins on
each individual orbital will be screened separately, while
for the rotationally invariant case a full S = 1 system
must be screened. The details of the quantum phase tran-
sition between strong-coupling and local moment phases
have not yet been analyzed. However, in view of a possible
relevance of an Ising-anisotropy in the presence of crystal
fields, a further investigation of this problem is certainly
interesting.

We also applied the NRG to the two-orbital Hubbard
model in the framework of DMFT to investigate the Mott-
Hubbard metal-insulator transition at T = 0 for the half-
filled case. The major goal was here to eludicate the in-
fluence of Hund’s coupling on the MIT and to investigate
how the restriction to an Ising-like exchange changes the
nature of the MIT. Our results are in general agreement
with previous ones [14–18]. In particular, for finite J quan-
tities like the effective mass or 〈S2

z 〉 show diverging slopes
as U ↗ Uc, possibly even discontinuities as proposed by
the L-DMFT [18].

For an Ising-like Hund’s exchange coupling the situ-
ation becomes qualitatively different. As can be antici-
pated from the behavior of the impurity model, the MIT
is strongly first order with clear jumps in the effective mass
and 〈S2

z 〉. Note that the former also implies a discontinu-
ous vanishing of the quasi-particle peak at T = 0 as one
reaches Uc. Also the physics underlying this transition is
quite different compared to the rotationally invariant case,
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reflecting the lack of spin-flip scattering processes connect-
ing the two states Sz = ±1. Thus, the metallic phase with
Ising-like interaction will be characterized by individual
screening of the spins on the two orbitals rather than a
Kondo screening of a total spin S = 1. Note that this
subtlety will most likely influence low-energy properties
on the metallic side close to Uc, but be less important for
“high-energy” properties like magnetic or orbital ordering.

It is clear, that the investigations presented here are
merely a starting point to systematically study proper-
ties of multi-orbital impurity models or correlated lat-
tice models within the DMFT at T → 0 using Wilson’s
NRG. The major advantage of this method is obviously
its unmatched ability to handle exponentially small energy
scales and nevertheless provide reliable information on dy-
namics and thermodynamics even on high-energy scales.
Thus, at least for two-orbital models we are now in a posi-
tion to systematically study their physical properties and
address questions that are of fundamental interest for a
realistic description of, for example, transition metal ox-
ides but require local degrees of freedom beyond a simple
one-band Hubbard model.
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